3.551 \(\int \frac{\sqrt{a+b x} \sqrt{c+d x}}{x} \, dx\)

Optimal. Leaf size=110 \[ \sqrt{a+b x} \sqrt{c+d x}-2 \sqrt{a} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )+\frac{(a d+b c) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{\sqrt{b} \sqrt{d}} \]

[Out]

Sqrt[a + b*x]*Sqrt[c + d*x] - 2*Sqrt[a]*Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])] + ((b
*c + a*d)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(Sqrt[b]*Sqrt[d])

________________________________________________________________________________________

Rubi [A]  time = 0.0712849, antiderivative size = 110, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.318, Rules used = {101, 157, 63, 217, 206, 93, 208} \[ \sqrt{a+b x} \sqrt{c+d x}-2 \sqrt{a} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )+\frac{(a d+b c) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{\sqrt{b} \sqrt{d}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + b*x]*Sqrt[c + d*x])/x,x]

[Out]

Sqrt[a + b*x]*Sqrt[c + d*x] - 2*Sqrt[a]*Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])] + ((b
*c + a*d)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(Sqrt[b]*Sqrt[d])

Rule 101

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a +
b*x)^m*(c + d*x)^n*(e + f*x)^(p + 1))/(f*(m + n + p + 1)), x] - Dist[1/(f*(m + n + p + 1)), Int[(a + b*x)^(m -
 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[c*m*(b*e - a*f) + a*n*(d*e - c*f) + (d*m*(b*e - a*f) + b*n*(d*e - c*f))
*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && GtQ[m, 0] && GtQ[n, 0] && NeQ[m + n + p + 1, 0] && (Integ
ersQ[2*m, 2*n, 2*p] || (IntegersQ[m, n + p] || IntegersQ[p, m + n]))

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x} \sqrt{c+d x}}{x} \, dx &=\sqrt{a+b x} \sqrt{c+d x}-\int \frac{-a c+\frac{1}{2} (-b c-a d) x}{x \sqrt{a+b x} \sqrt{c+d x}} \, dx\\ &=\sqrt{a+b x} \sqrt{c+d x}+(a c) \int \frac{1}{x \sqrt{a+b x} \sqrt{c+d x}} \, dx-\frac{1}{2} (-b c-a d) \int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx\\ &=\sqrt{a+b x} \sqrt{c+d x}+(2 a c) \operatorname{Subst}\left (\int \frac{1}{-a+c x^2} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )+\frac{(b c+a d) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x}\right )}{b}\\ &=\sqrt{a+b x} \sqrt{c+d x}-2 \sqrt{a} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )+\frac{(b c+a d) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )}{b}\\ &=\sqrt{a+b x} \sqrt{c+d x}-2 \sqrt{a} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )+\frac{(b c+a d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{\sqrt{b} \sqrt{d}}\\ \end{align*}

Mathematica [A]  time = 0.512892, size = 162, normalized size = 1.47 \[ \frac{\sqrt{b c-a d} (a d+b c) \sqrt{\frac{b (c+d x)}{b c-a d}} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b c-a d}}\right )+b \sqrt{d} \left (\sqrt{a+b x} (c+d x)-2 \sqrt{a} \sqrt{c} \sqrt{c+d x} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )\right )}{b \sqrt{d} \sqrt{c+d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + b*x]*Sqrt[c + d*x])/x,x]

[Out]

(Sqrt[b*c - a*d]*(b*c + a*d)*Sqrt[(b*(c + d*x))/(b*c - a*d)]*ArcSinh[(Sqrt[d]*Sqrt[a + b*x])/Sqrt[b*c - a*d]]
+ b*Sqrt[d]*(Sqrt[a + b*x]*(c + d*x) - 2*Sqrt[a]*Sqrt[c]*Sqrt[c + d*x]*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a
]*Sqrt[c + d*x])]))/(b*Sqrt[d]*Sqrt[c + d*x])

________________________________________________________________________________________

Maple [B]  time = 0.011, size = 244, normalized size = 2.2 \begin{align*}{\frac{1}{2}\sqrt{bx+a}\sqrt{dx+c} \left ( \sqrt{ac}\ln \left ({\frac{1}{2} \left ( 2\,bdx+2\,\sqrt{d{x}^{2}b+adx+bcx+ac}\sqrt{bd}+ad+bc \right ){\frac{1}{\sqrt{bd}}}} \right ) ad+\sqrt{ac}\ln \left ({\frac{1}{2} \left ( 2\,bdx+2\,\sqrt{d{x}^{2}b+adx+bcx+ac}\sqrt{bd}+ad+bc \right ){\frac{1}{\sqrt{bd}}}} \right ) bc-2\,ac\ln \left ({\frac{adx+bcx+2\,\sqrt{ac}\sqrt{d{x}^{2}b+adx+bcx+ac}+2\,ac}{x}} \right ) \sqrt{bd}+2\,\sqrt{d{x}^{2}b+adx+bcx+ac}\sqrt{bd}\sqrt{ac} \right ){\frac{1}{\sqrt{d{x}^{2}b+adx+bcx+ac}}}{\frac{1}{\sqrt{bd}}}{\frac{1}{\sqrt{ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(1/2)*(d*x+c)^(1/2)/x,x)

[Out]

1/2*(b*x+a)^(1/2)*(d*x+c)^(1/2)*((a*c)^(1/2)*ln(1/2*(2*b*d*x+2*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)*(b*d)^(1/2)+a*d
+b*c)/(b*d)^(1/2))*a*d+(a*c)^(1/2)*ln(1/2*(2*b*d*x+2*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d
)^(1/2))*b*c-2*a*c*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)+2*a*c)/x)*(b*d)^(1/2)+2*(b*d*
x^2+a*d*x+b*c*x+a*c)^(1/2)*(b*d)^(1/2)*(a*c)^(1/2))/(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)/(b*d)^(1/2)/(a*c)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)*(d*x+c)^(1/2)/x,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 6.29451, size = 1941, normalized size = 17.65 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)*(d*x+c)^(1/2)/x,x, algorithm="fricas")

[Out]

[1/4*(2*sqrt(a*c)*b*d*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a*c + (b*c + a*d)*x)*sqrt(a*
c)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) + 4*sqrt(b*x + a)*sqrt(d*x + c)*b*d + (b*c + a*
d)*sqrt(b*d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x +
a)*sqrt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x))/(b*d), 1/2*(sqrt(a*c)*b*d*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d +
 a^2*d^2)*x^2 - 4*(2*a*c + (b*c + a*d)*x)*sqrt(a*c)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2
) + 2*sqrt(b*x + a)*sqrt(d*x + c)*b*d - (b*c + a*d)*sqrt(-b*d)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(-b*d)*sqr
t(b*x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)))/(b*d), 1/4*(4*sqrt(-a*c)*b*d*arctan
(1/2*(2*a*c + (b*c + a*d)*x)*sqrt(-a*c)*sqrt(b*x + a)*sqrt(d*x + c)/(a*b*c*d*x^2 + a^2*c^2 + (a*b*c^2 + a^2*c*
d)*x)) + 4*sqrt(b*x + a)*sqrt(d*x + c)*b*d + (b*c + a*d)*sqrt(b*d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a
^2*d^2 + 4*(2*b*d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x))/(b*d), 1/2*
(2*sqrt(-a*c)*b*d*arctan(1/2*(2*a*c + (b*c + a*d)*x)*sqrt(-a*c)*sqrt(b*x + a)*sqrt(d*x + c)/(a*b*c*d*x^2 + a^2
*c^2 + (a*b*c^2 + a^2*c*d)*x)) + 2*sqrt(b*x + a)*sqrt(d*x + c)*b*d - (b*c + a*d)*sqrt(-b*d)*arctan(1/2*(2*b*d*
x + b*c + a*d)*sqrt(-b*d)*sqrt(b*x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)))/(b*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + b x} \sqrt{c + d x}}{x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(1/2)*(d*x+c)**(1/2)/x,x)

[Out]

Integral(sqrt(a + b*x)*sqrt(c + d*x)/x, x)

________________________________________________________________________________________

Giac [B]  time = 1.28575, size = 246, normalized size = 2.24 \begin{align*} -\frac{{\left (\frac{4 \, \sqrt{b d} a b c \arctan \left (-\frac{b^{2} c + a b d -{\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2}}{2 \, \sqrt{-a b c d} b}\right )}{\sqrt{-a b c d}} - 2 \, \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \sqrt{b x + a} + \frac{{\left (\sqrt{b d} b c + \sqrt{b d} a d\right )} \log \left ({\left (\sqrt{b d} \sqrt{b x + a} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d}\right )}^{2}\right )}{d}\right )}{\left | b \right |}}{2 \, b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)*(d*x+c)^(1/2)/x,x, algorithm="giac")

[Out]

-1/2*(4*sqrt(b*d)*a*b*c*arctan(-1/2*(b^2*c + a*b*d - (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a
*b*d))^2)/(sqrt(-a*b*c*d)*b))/sqrt(-a*b*c*d) - 2*sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a) + (sqrt(b*d
)*b*c + sqrt(b*d)*a*d)*log((sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2)/d)*abs(b)/b^2